Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Front Immunol ; 13: 1089064, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2230449

RESUMEN

Background: Lung inflammation, neutrophil infiltration, and pulmonary vascular leakage are pathological hallmarks of acute respiratory distress syndrome (ARDS) which can lethally complicate respiratory viral infections. Despite similar comorbidities, however, infections in some patients may be asymptomatic while others develop ARDS as seen with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections for example. Methods: In this study, we infected resistant C57BL/6 and susceptible A/J strains of mice with pulmonary administration of murine hepatitis virus strain 1 (MHV-1) to determine mechanisms underlying susceptibility to pulmonary vascular leakage in a respiratory coronavirus infection model. Results: A/J animals displayed increased lung injury parameters, pulmonary neutrophil influx, and deficient recruitment of other leukocytes early in the infection. Moreover, under basal conditions, A/J neutrophils overexpressed primary granule protein genes for myeloperoxidase and multiple serine proteases. During infection, myeloperoxidase and elastase protein were released in the bronchoalveolar spaces at higher concentrations compared to C57BL/6 mice. In contrast, genes from other granule types were not differentially expressed between these 2 strains. We found that depletion of neutrophils led to mitigation of lung injury in infected A/J mice while having no effect in the C57BL/6 mice, demonstrating that an altered neutrophil phenotype and recruitment profile is a major driver of lung immunopathology in susceptible mice. Conclusions: These results suggest that host susceptibility to pulmonary coronaviral infections may be governed in part by underlying differences in neutrophil phenotypes, which can vary between mice strains, through mechanisms involving primary granule proteins as mediators of neutrophil-driven lung injury.


Asunto(s)
COVID-19 , Lesión Pulmonar , Virus de la Hepatitis Murina , Neumonía , Síndrome de Dificultad Respiratoria , Ratones , Animales , Neutrófilos , Peroxidasa , Ratones Endogámicos C57BL , SARS-CoV-2 , Proteínas
2.
Front Immunol ; 13: 970287, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2224769

RESUMEN

Severe respiratory viral infections, including SARS-CoV-2, have resulted in high mortality rates despite corticosteroids and other immunomodulatory therapies. Despite recognition of the pathogenic role of neutrophils, in-depth analyses of this cell population have been limited, due to technical challenges of working with neutrophils. We undertook an unbiased, detailed analysis of neutrophil responses in adult patients with COVID-19 and healthy controls, to determine whether distinct neutrophil phenotypes could be identified during infections compared to the healthy state. Single-cell RNA sequencing analysis of peripheral blood neutrophils from hospitalized patients with mild or severe COVID-19 disease and healthy controls revealed distinct mature neutrophil subpopulations, with relative proportions linked to disease severity. Disruption of predicted cell-cell interactions, activated oxidative phosphorylation genes, and downregulated antiviral and host defense pathway genes were observed in neutrophils obtained during severe compared to mild infections. Our findings suggest that during severe infections, there is a loss of normal regulatory neutrophil phenotypes seen in healthy subjects, coupled with the dropout of appropriate cellular interactions. Given that neutrophils are the most abundant circulating leukocytes with highly pathogenic potential, current immunotherapies for severe infections may be optimized by determining whether they aid in restoring an appropriate balance of neutrophil subpopulations.


Asunto(s)
COVID-19 , Humanos , Neutrófilos , SARS-CoV-2 , Gravedad del Paciente , Antivirales
3.
Antimicrobial Stewardship and Healthcare Epidemiology ; 2(S1):s76-s77, 2022.
Artículo en Inglés | ProQuest Central | ID: covidwho-2184980

RESUMEN

Background: SARS-CoV-2, the virus causing COVID-19 infection, can significantly contaminate environmental surfaces and can remain viable on surfaces for up to 9 days. Although respiratory route remains the most significant mode of transmission, fomites and environmental sources of infection remain a concern for healthcare personnel who are working in dedicated COVID-19 units. We investigated the extent of detectable SARS-CoV-2 contamination in the environment of COVID-19 patients at a single VA hospital, with the intent of identifying potential high-touch surfaces at risk for viral contamination, which could be used to inform the development of simple COVID-19 prevention strategies. Methods: We conducted a cohort study at 1 VA hospital in a unit housing adult veterans admitted with COVID-19 between October and December 2020. In total, 11 swab specimens were collected for PCR analysis (SARS-CoV-2 env gene) from environmental surfaces inside and just outside the rooms of COVID-19 patients one time. Retrospective chart reviews were conducted to provide the SARS-CoV-2 epidemiologic context for environmental detection. Results: In total, 297 swabs were collected from the unit and environmental areas surrounding 27 hospitalized patients: average age, 72.5 years (range, 34–94);100% male;92% non-Hispanic white;average comorbidities, 1.8 (SD, 1.1). Of 297 swabs, 80 (27%) were positive for SARS-CoV-2 and 19 (70%) of 27 patients had at least 1 positive site. The most contaminated site was the floor just outside the patient room (78% positive samples), followed by the patient's bedrail (37%) and chair handle (37%) (Fig. 1). Traditionally high-touch surfaces, such as the door handle (outside patient room) and the light switch, did not have high positivity rates (<15%). Interestingly, both the personal protective equipment (PPE) cart outside patient's room (33%) and the double doors leading out of the unit (19%) were positive, which are surfaces often touched with bare hands after handwashing. Analyses of clinical data are underway to examine whether specific care needs, based on activities of daily living disability, comorbidities, and clinical presentation of COVID-19, predict SARS-CoV-2 environmental contamination. Conclusions: The presence of environmental contamination by SARS-CoV-2 highlights the importance of transmission via direct or indirect contact. Studies targeting high-risk populations are needed to better understand the transmission of SARS-CoV-2 between infected patients and their environment. Our findings also suggest that handwashing and attention to using disinfecting wipes may mitigate the risk of transmission of virus from surfaces that one might consider safe to touch.Funding: NoneDisclosures: None

4.
Frontiers in immunology ; 13, 2022.
Artículo en Inglés | EuropePMC | ID: covidwho-2126268

RESUMEN

Severe respiratory viral infections, including SARS-CoV-2, have resulted in high mortality rates despite corticosteroids and other immunomodulatory therapies. Despite recognition of the pathogenic role of neutrophils, in-depth analyses of this cell population have been limited, due to technical challenges of working with neutrophils. We undertook an unbiased, detailed analysis of neutrophil responses in adult patients with COVID-19 and healthy controls, to determine whether distinct neutrophil phenotypes could be identified during infections compared to the healthy state. Single-cell RNA sequencing analysis of peripheral blood neutrophils from hospitalized patients with mild or severe COVID-19 disease and healthy controls revealed distinct mature neutrophil subpopulations, with relative proportions linked to disease severity. Disruption of predicted cell-cell interactions, activated oxidative phosphorylation genes, and downregulated antiviral and host defense pathway genes were observed in neutrophils obtained during severe compared to mild infections. Our findings suggest that during severe infections, there is a loss of normal regulatory neutrophil phenotypes seen in healthy subjects, coupled with the dropout of appropriate cellular interactions. Given that neutrophils are the most abundant circulating leukocytes with highly pathogenic potential, current immunotherapies for severe infections may be optimized by determining whether they aid in restoring an appropriate balance of neutrophil subpopulations.

5.
Infect Control Hosp Epidemiol ; 42(4): 392-398, 2021 04.
Artículo en Inglés | MEDLINE | ID: covidwho-2096426

RESUMEN

OBJECTIVE: The seroprevalence of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) IgG antibody was evaluated among employees of a Veterans Affairs healthcare system to assess potential risk factors for transmission and infection. METHODS: All employees were invited to participate in a questionnaire and serological survey to detect antibodies to SARS-CoV-2 as part of a facility-wide quality improvement and infection prevention initiative regardless of clinical or nonclinical duties. The initiative was conducted from June 8 to July 8, 2020. RESULTS: Of the 2,900 employees, 51% participated in the study, revealing a positive SARS-CoV-2 seroprevalence of 4.9% (72 of 1,476; 95% CI, 3.8%-6.1%). There were no statistically significant differences in the presence of antibody based on gender, age, frontline worker status, job title, performance of aerosol-generating procedures, or exposure to known patients with coronavirus infectious disease 2019 (COVID-19) within the hospital. Employees who reported exposure to a known COVID-19 case outside work had a significantly higher seroprevalence at 14.8% (23 of 155) compared to those who did not 3.7% (48 of 1,296; OR, 4.53; 95% CI, 2.67-7.68; P < .0001). Notably, 29% of seropositive employees reported no history of symptoms for SARS-CoV-2 infection. CONCLUSIONS: The seroprevalence of SARS-CoV-2 among employees was not significantly different among those who provided direct patient care and those who did not, suggesting that facility-wide infection control measures were effective. Employees who reported direct personal contact with COVID-19-positive persons outside work were more likely to have SARS-CoV-2 antibodies. Employee exposure to SARS-CoV-2 outside work may introduce infection into hospitals.


Asunto(s)
COVID-19/epidemiología , Personal de Salud/estadística & datos numéricos , SARS-CoV-2 , Estudios Seroepidemiológicos , United States Department of Veterans Affairs/estadística & datos numéricos , Adolescente , Adulto , COVID-19/etiología , Femenino , Humanos , Masculino , Michigan/epidemiología , Persona de Mediana Edad , Exposición Profesional/estadística & datos numéricos , Factores de Riesgo , Estados Unidos/epidemiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA